A conparison of AES candi dates on the
Al pha 21264

Ri chard Wi ss Nat han Bi nkert

VSSAD Labs Conput er Sci ence Dept
Conpaqg Conput er Corp, Uni versity of M chigan
334 South St Ann Arbor, M
Shrewsbury, MA 01545 bi nkert n@inm ch. edu

Ri char d. Wi ss@Conpag. com

ABSTRACT

We conpare the five candidates for the Advanced Encryption Standard based on
their performance on the Al pha 21264, a 64-bit superscal ar processor. There are
several new features of the 21264 that have a significant inpact on
encryption/decrypti on speed. The main ones are greater potential for
instruction-level parallelism(ILP) and larger level 1 cache. The ILP cones
fromthe fact that the 21264 can issue four integer instructions per cycle. W
envi sion that for high-performance servers, there will be multiple streans of
data for encryption or decryption. The type of parallelismthat we consider in
this paper is the encryption of nmultiple, independent blocks interleaved in the
same code | oop running on the sane processor. This benefits sonme al gorithns
nore than others. R jndael and Twofish turn out to be the fastest for a single
block at a tine, but RC6 is potentially the fastest when processing two bl ocks
at a tine. The reason for this is that out-of-order execution together with an
i ssue width of four can be used to hide the latency of integer multiplies.

| nt roduction

The new AES algorithns will be used on a wide range of CPU s. The Al pha

21264 is a good representative of a 64-bit R SC architecture. |Its features

i nclude a 64K two-way set associative level-1 cache, the capability to

i ssue 4 integer instructions each cycle, and out-of-order execution. Since
the Alpha is nost likely to be used in servers, it will probably be used

for encrypting or decrypting multiple streans of data sinultaneously. This can
be done on nmultiple processors, but it is also relevant to | ook at the
efficiency of processing nore than one bl ock sinultaneously on each processor
t hus increasing the throughput of the system In the remainder of this paper
we will use the termnultiple streamor multistreamto refer to nore than one
bl ock on the sane processor. Most of the studies so far have | ooked at single
stream performance, where latency is the dom nant factor. |In order to get
optimal nultistreamperformance, it will be necessary to harness the ful
bandwi dt h of the processor. The five candi date AES al gorithms have different
conput ati onal requirements, and therefore have different behavior with respect
to nultistreamthan single stream

We illustrate the nultiple stream scenario with an exanple, so that there is no
anmbiguity. Consider the followi ng assenbly | anguage fragment froma | oop for an

i magi nary processor that can issue two instructions per cycle, at npbst one of
whi ch can be a multiply:

| oop:
1. Load 9[0] # | oad key
2. T = Mll A*A
3. Load 9] 1] # | oad key
4. U= Mll B*B
5. C= Shift _right T
6. D=Shift_left T
7. E=Shift _right U
8. F =5hift_left U
9. C=CO D
10. E=EO F
11. B = C Add S[0]
12. A = E Add S[1]
13. Br |l oop
The processor will execute two instructions per cycle except for the branch. |If

the | atency of each instruction were one cycle, then the whol e code woul d take
seven cycles. However, if the latency of a multiply is seven cycles and at nost
one can be issued in a given cycle, then there is a five cycle stall after the
fourth instruction. Therefore, the execution tinme increases to 12. Now

consi der what we can do for two i ndependent bl ocks of data:

| oop:
Load S1[0] # | oad keyl
T1 = Ml Al*Al

Load S1[1] # | oad keyl
Ul = mull B1*B1

C2 = Shift _right T2

D2 = Shift_left T2

E2 = Shift_right U2

F2 = Shift_left U2

2= O D2

E2 = E2 O F2

B2 = C2 Add S2[0]

A2 = E2 Add S2[1]

Load S2[0] # | oad key2

T2 = Mull A2*A2

Load S2[1] # | oad key2
U2 = Mull B2*B2

Cl = sShift_right T1

DL = shift_left T1
El = Shift_right U1
F1 = sShift_|left Ul
Cl=CLOo D

El = E1 O F1

Bl = C1 Add S1[0]

Al = E1 Add S1[1]

Br 1 oop

The conbi ned | oop can process two blocks in only 13 cycles. The processing of
the two bl ocks can be overlapped in such a way that while the shift operations
for one block are waiting for the multiplies to conplete, operations on the

ot her block can proceed. For the 21264, the latency for a nultiply is actually
seven, and the latency of a load is three or nore, depending on whether or not
the value is in the D-cache. The 21264 can issue up to four integer
instructions in one cycle, at nost two of which can be |oads. The out-of-order
processing capability is not actually used if the conpiler schedul es the
instructions to take into account the latency. It should be noted that future
generations of Al pha processors will have simultaneous multithreadi ng (SMI),
which will elimnate the necessity of the programmrer/conpiler merging two
streans of data in one instruction stream

The key to taking advantage of the full issue width of the Al pha is recognizing
when a program has a | ow nunber of instructions per cycle (ipc). In the above
exanpl e, this was caused by the long latency of the nmultiplies, but there may be
ot her cases where this happens. For exanmple, in the inplenentation of Serpent
that we used, there were | ong chains of dependent |ogical operations, which
resulted in an ipc of slightly less than two. Thus, Serpent can achieve a
speedup of al most two by processing two streans. RC6 is sinmlar to the exanple
above in that the multiplies introduce |atency, which reduces the ipc to a |eve
for which processing two streans works well. On the other hand, Rijndael
Twofi sh and Mars do not |end thenselves to this approach. They can be coded
efficiently for single streamso that the table | ookups can be overl apped with

the other conputation and the ipc is well over two. It should be noted that an
i pc of greater than two does not preclude nmultistream processing, but the gains
are likely to be small. Also, it is inportant to use an optim zed version of

the code, otherwise a lowipc will only reflect the inefficiency of the

i mpl enentation rather than the potential for multistreamparallelism For this
reason, we examine assenbly | anguage inplenmentations in addition to the C
ver si ons.

One of the architectural features that is missing fromAl pha is the 32-bit
rotate. This requires several instructions to ermulate. A fixed rotation
requires two shifts an “and” and an “or”. These can be executed in two paralle
chains and in the absence of other parallelismthey have an i pc of two.

The next section presents an anal ysis of each algorithmin terns of ipc for a C
i mpl enentati on and for an assenbly code inplenmentation

Anal ysis of Al gorithns

Qur goal is to get a quick estimate of the performance for nultistreamdata. W
do this by checking the timngs for the d adman C inpl enmentati ons of the five
candi date algorithnms for single streamdata and estimating the ipc. Then in sone

cases, we also | ook at assenbly | anguage inplenentations to see if the ipc could
be increased. While a high ipc will rule out a gain frommultistream a low ipc
does not guarantee one. A range of techniques was used froma conplete

i npl enentation in assenbly |anguage in the case of Rijndael, to coding a single

round in assenbly | anguage for Rc6 and Twofish, to a data dependency anlysis for
Mars and Serpent. The data dependency anal ysis together with instruction

| atency was used to estimate optimal tinmes for the last two algorithms. 1In the

one case where we did an assenbly | anguage inplenentation, the time for this was
conpared with our estimate. Finally, we estimated the gains for nultiple stream
i mpl enent ati ons.

Mar s

The Mars al gorithm has three phases: sinple arithmetic and | ogi cal operations,
tabl e | ookup and rotations. The table |ookup, which is nixed with sone fixed
rotations has a four-fold parallelism This seenms to be the reason for a high

i pc, and therefore little gain fromnultistream Since the Al pha does not have
a 32-bit rotate, this increases the nunber of instructions. For this reason,

it is both one of the fastest algorithms on a Pentium Pro but one of the sl owest
on the 21264.

RC6

RC6 turns out to be a lot nore efficient on the Al pha 21264 t han expected

from observing the number of cycles for a single block of data. For single

st ream performance, each round when coded in assenbly | anguage, takes 18 cycles
and there are 20 rounds. |If we allow 20 cycles for setup, this gives a total of
380 cycles per block. This is amazingly close to the current reported figure of
382 cycles per block for the optinized C version. A single round of encryption
for two i ndependent bl ocks of data sinultaneously was al so coded in assenbly

| anguage for an estimted 21 cycles, which is less than 11 cycl es/block. For 20
rounds, this would be 210 cycles/block plus the time for setup and storing
results. This is as fast as Rijndael, and is potentially nore consistent since
it uses multiplication, which have a fixed |atency, and does not depend on table
| ookups which could suffer occasional cache msses. |In addition, if the

al gorithmwere used with a word size of 64, this could potentially double the

t hr oughput, since the 64-bit versions of the operations nultiply, xor, add and
rotate are as fast or faster than the 32-bit versions on Al pha processors.

Ri j ndae

The sinplicity of the Rijndael algorithmmmakes it easy to analyze. W were able
to produce an efficient inplenentation in assenbly code together with timng
results. The mmjor conmputational cost for this algorithmis accessing the | ook-
up tables. This can be done in three instructions: extract byte, add to base
address, and | oad the value. For Alpha, this is relatively fast, since the
tables fit in the level-one cache. ldeally, one round of Rijndael could be done
in 18 cycles: however, in practice, this requires tuning the code to elimnate

| -cache m sses, D-cache misses, etc. Wat we observed was that the code took
246 cycl es/ bl ock when executed repeatedly. This is about 23 cycles per round.
This was the fastest algorithmwe have observed for 128-bit key | ength. However,
since the nunber of rounds for Rijndael depends on the key length, this is not
the fastest for all applications.

We expect the Rijndael algorithmto scale well with future processors since

t he makeup of the code is such that one quarter of the instructions are | oads.
The Al pha 21264 can issue four integer instructions per cycle, and there is a
four-fold parallelismfromthe four S-boxes. However, this gives it a high ipc
and neans that there is little gain fromnultistreaming. A single round of

Ri j ndael takes 18 cycles. The setup and exit code adds another 30 cycles to the
total to give approximtely 210 cycles per bl ock

Ser pent

Based on the C-code fromBrian d adman, this algorithmis the slowest. However,
it speeds up very well with nultistreaming. The S-boxes are inplenmented by
sequences of bit-parallel |ogical operations. Due to data dependencies in this
code, the ipc is slightly less than two. The technique for estimting the two
stream performance was to nodify the C code. Each round is conposed of three
macros: an “xor” with the key, an S-box conmputation, and a linear transform
The processing of the two streans was interleaved by repeating each macro for
the first streamwith the identical macro for the second stream The conpil er
was able further mix the instructions to elimnate stalls. Neverthel ess,
Serpent remains one of the slower algorithns because of the |arge nunber of
rounds and the | arge nunber of instructions per round. It should be noted that
nost of the operations in Serpent operate on bits in parallel. It should be
possi ble to process two bl ocks of 32-bit words by using the full 64-bit data
path. Narely, one bl ock would use the upper 32 bits, and the other block woul d
use the lower bits. There would be an extra “and” for the rotates as well as
packi ng the two words together, but the speedup could be close to 2x.

Twof i sh

Based on an assenbly | anguage codi ng of a single round, twofish perforns
approxinmately as well as Rijndael on both the 21164 and the 21264 for 128-bit
key length. Since Twofish does not require nore rounds for |arger key |engths,
its relative performance would be better for |onger keys. It can potentially do
ei ght S-box | ookups in parallel for each round. This gives it a high ipc and
small gain for multistreamn ng

Timng Results

Table 1 shows the results fromoptinized Ccode for the Al pha 21164 and 21264
processing one block at a tine. The 21164 can issue two integer instructions
per cycle and the 21264 can issue four. The results are simlar to those
publ i shed by Granboulan [Gran]. Qur timngs were all obtained by running each of
the algorithnms for key setup, encryption and decryption on a single stream of
data, one block at a time. The C-versions of these algorithns are the ones
published by dadman [d adl]. W ported themto Al pha by using the native cycle
count register and nodi fying the declarations to elinmnate alignnent errors in
the code. The basic idea is to time the execution of the encryption
(decryption) code running once, then tine it running twice. The nminimmtines
over a large nunber of iterations are subtracted to neasure the tinme to execute
the code without the startup costs. In addition, the encryption (decryption)
code is run once at the beginning to warm up the caches.

In order to relate our assenbly code estimates to the C inplenentations, we

i nked our assenbly version of Rijndael to the @ adman harness and observed an
encryption time of 280 cycl es/block. The assenbly code when executed for a

| arge nunmber of iterations took a mnimum of 246 cycles/block. This suggests
that the C++ overhead for calling some of the C or assenbly functions could be
significant.

In Table 2, we have estimated tinmng results for assenbly | anguage
i mpl enentations for some of the algorithms for single stream Table 3 shows the
estimated timng for assenbly code for processing multiple streans.

EV56 (21164) | Mars RC6 Rijndael Serpent Twofish
Ours 701c 571c 439c 984c 442¢
Granboulan 507c 559¢ 490c 998c 490c
website

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Ours 515¢ 428c 293c 854c 316¢
Granboulan 450c 382c 285¢c 855¢c 315c
website

Table 1. Timng conparison in cycles/block for C code.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish

Assembly code | 375c¢ 360c 210c 570c 255¢c

Table 2. Estimated timng for assenbly code in cycl es/ bl ock.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish

Assembly code | 375c¢ 210c 210c 506¢ 255¢c

Table 3. Estimated tine for assenmbly code encrypting two bl ocks
simul taneously. Tines are in cycles/bl ock.

Concl usi ons

RC6 has the nobst potential for parallelismwhen multiple streans are processed
on the sane processor simultaneously in a single thread. One reason for this is
that it relies heavily on multiplication, which itself has a | arge degree of
parallelismfor the Al pha processors. 32-bit multiplies are inherently parallel
because they operate on four bytes at the sane tine. Using 64-bit multiplication
woul d afford even nore parallelism The 21264 can issue one nultiply every
cycle. The latency of seven cycles does not limt bandwi dth for this algorithm
in multistream node. An S-box |ookup requires three instructions, and only
operates on one byte at a tine. Note that while RC6 has variable 32-bit
rotations, one of the intermediate results fromthe fixed rotation by 5is re-
used in the variable rotation

Serpent also has a large gain frommultistream processing because of the |ong
dependent chains of instructions and low ipc. However, because of the |arge
nunber of rounds and instructions per round, it still is slow

Fol | owi ng RC6 are Twofish and Rijndael, which both use 8-bit table | ookups and
linear transforns. Twofish has an advantage for |onger keys, but R jndael seens
the fastest for 128-bit keys. Based on an assenbly |anguage inplenentation of

Ri j ndael, there can be a significant difference between the estimated
performance and what can be readily achi eved/ observed by counting cycl es outside
of the algorithmfunction call. Conparing code execution with timng
estimations can have a significant anount of error.

Since our estimates for the Al pha 21264 are based on instruction |evel
paral l elismfor processing multiple streams, sinilar behavior should be
observabl e for Itanium and ot her VLIW nachi nes.

Acknowl edgenents.

W would like to thank Dr. Brian d adnan for publishing unified C

i mpl enentations of the five AES candidate algorithms. Also we thank Steve Root
for assenbly | anguage inpl enentati ons of sone of the al gorithns.

Ref er ences

[KA] Al mgui st, Kenneth. “AES Candi date performance on the Al pha 21164.
htt p: // home. cyber. ee/ hel ger/ aes/ kennet h. t xt

[@adl] dadman, Brian. “lInplementation experience with AES candi date
al gorithms.” Second AES Conference, Feb, 1999.
http://jya.coni bg/ gl adman. pdf

[@ ad2] d adman, Brian.
http://ww. btinternet.conm ~brian. gl adman/ crypt ogr aphy_t echnol ogy/ Aes/ i ndex. ht m

[Gan] Granboul an, Louis. “AES Timngs of best known inplenmentations.”
http://ww.dnm . ens. fr/~granboul /recherche/ AES/ti m ngs. htn

[SKW Schneier, B., Kelsey, J., Witing, D., et al. “Performance Comnparison of
the AES Submi ssions.”

